FIRST MID TERM EXAMINATION

SEPTEMBER 2018

CLASS XI

Marking Scheme – CHEMISTRY[THEORY]

SET A

Q.NO.	Answers		Marks (with split up)
1.	Unnilquadium, Unq		$\frac{1}{2} + \frac{1}{2}$
2.	Dot structure		1
3.	Dry cleaning with liquid CO ₂ , bleaching with hydrogen peroxide, environmental friendly catalyst [any two suitable methods]		
4.	Diagram		1/2 + 1/2
5.	Presence of isotopes		1
6.	 a) Ratio of number of moles of a component to the total number of moles of all the components. b) Melocular mass - 2v years density 		1 1
7.	b) Molecular mass= $2x$ vapor density $c=\upsilon\lambda$ $\upsilon=3x10^8/600x10^{-9}$ $\upsilon=5x10^{14}Hz$ Wave no.= $1/\lambda$ = $1/600 x10^{-9}$ = $1.67x10^6 m^{-1}$		1/2 1/2 1/2 1/2
8.	Same number of electrons Cl ⁻ , K ⁺ [any correct species]		1 1/2+1/2
9.	Photochemical smog	Classical smog	1 each
	Happens in warm,dry sunny climate	Cool and humid	
	Oxidizing in nature	Reducing in nature	
	Or Certain gases act like a blanket, absorbing IR radiation and preventing it from escaping into outer space ,to keep the temperature of earth suitable for life to exist. CO ₂ , CH ₄ , H ₂ O[any two]		1 ½ each
10.	(n-1) d ¹⁻¹⁰ ns ⁰⁻² Variable oxidation state/colored salts/catalyst [any two]		1 ½ each
11.	Chlorofluorocarbons Skin cancer/cataract/loss of phytoplankton		1 ½ each
12.	The energy required to break apart an ionic solid and convert its component atoms into gaseous ions.		

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
13.	The process by which a body of water becomes enriched in dissolved nutrients (such as phosphates) that stimulate the growth of aquatic plant life usually resulting in the depletion of dissolved oxygen. Rain with a pH below 5.6	1
	Affects monuments, corrodes metals, changes pH of soil, waterbodies [any two harmful effects]	1
14.	Reagent that gets used up completely in a chemical reaction/reagent present in lesser number of moles.	1
	LR=HCl=0.1x100/1000=0.01moles Volume of hydrogen=0.01x22.4/2=0.112L	1 1
15.	a) Formal Charge = [no. of valence electrons on atom] – [non-bonded electrons] + ½[number of bondpairs].	1
	b) Resonance	1
		1
16.	i)B ii) D iii) C	1 each
17.	Eo= 2.13 eVx 1.6 x 10^{-19} J= 3.41 x 10^{-19} J	1
	$E=hc/\lambda=4.97x10^{-19}J$ $Ke=1.56x10^{-19}J$	1 1
	Re-1.50x10 J	1
	Or	
	a) $\Lambda = h/mv$ = $6.626 \times 10^{-34} / 2.2 \times 10^{-3} \times 300$	1/ ₂ 1/ ₂
	$=0.020 \times 10^{-7} \times 10^{-1} \times 10^{-$	$\begin{vmatrix} \frac{1}{2} \\ \frac{1}{2} \end{vmatrix}$
	b) Wave number= $109677[1/n_1^2 - 1/n_2^2]$	1/2
	=109677[1/4-1/9]	1/2
18.	=15232.9cm ⁻¹ a) Lesser nuclear charge per electron	1/2
10.		1
	b) Half filled stable orbitals in nitrogen	1
	c) Electron enters smaller n=2 and experiences electron repulsions	1
19.	Statement	1 each
20.	a) Group 14, period 4	½ each
	 b) A qualitative measure of the ability of an atom in a chemical compound to attract shared electrons to itself c) No. Vender Weels radii larger than covalent radii 	1
21.	c) Ne, Vander Waals radii larger than covalent radii a) 4f b) 1s,2p,4s,3d c)3e	1 each
22.	Low ionization enthalpy of metallic element /high electron gain enthalpy of nonmetallic	1 each
	element/large lattice enthalpy	

23.	Fe ³⁺ configuration		1
	Stable due to half-filled orbitals		1
	symmetry/higher exchange energy		1
24.	1p,3f:n≠l		
	Pairing of electrons in the orbitals belonging to the same subshell does not take place until		
	each orbital is singly occupied.		
25	Nitrogen 1s ² 2s ² 2p _x 12p _y 12p _z 1		
25.	a) Simplest whole number ratio of various atoms present in a Compound.b) BH₃		
	О) БП3	O	1
	54.24/12 9.05/1	36.71/16	
	4.52 9.05	2.29	
	2 4	1	
			1
	$E.F = C_2H_4O$		
	n=88/44=2		
	$MF = C_4H_8O_2$		
	OR		
	i) Number of moles of solute presen	_	
	ii) Molality as it is temperature inde		1
	iii) $M=\%d10/M_B=11.4$ moles/L		
	iv) S=22.5%		$1\frac{1}{2}$ $1\frac{1}{2}$
26.	a) Orbitals with same energy		1 1 1 1 1
20.	a) Orbitals with same energy		
	b) It is impossible to determine simultaneously, the exact position and exact		
	momentum (or velocity) of an electron.		
	c) Uncertainty in speed 0.2m/s		1
	uncertainty in position=h/4Πm		1 1/2
	$=6.626 \times 10^{-34} / 4 \times 3.14 \times 2.5 \times 10^{-3} \times 0.2$		
	$=1.05 \times 10^{-31} \text{m}$		1/2
		OR	
		/stark effect/finer details of line spectrum of	1each
	hydrogen [any two]		
	ii. $E=-2.18 \times 10^{-18} / 25 = -8.72 \times 10^{-20} J$		11/2
	R=52.9x25/1=1322.5pm		1½
27.	a) H ₂ O-2lp, 2bp, bent/v shape/105°		1
	CH ₄ -4bp, tetrahedral/109.5 °		
	ClF ₃ -2lp,3bp, T shape		
	b) Less than 8e around central atom/BeCl ₂ More than 8e around central atom /PCl ₅		
	iviore man de around central aton	11 /1 C15	1

	OR	
i.	Shared pair of electrons between bonded atoms are bond pairs & valence electron	1
	that do not take part in bonding are lone pairs.	
	Explanation with an example	1
ii.	a)due to lone pair repulsion it occupies equatorial position	1
	b) NH ₃ is more polar as the dipoles are all in one direction whereas in NF ₃ the	
	dipole due to lp electron is in opposite direction to give a smaller net dipole	2
	[figure]	