FIRST MID TERM EXAMINATION

SEPTEMBER 2018

CLASS XI

Marking Scheme - CHEMISTRY[THEORY]

SET A

Q.NO.		Answers	$\begin{aligned} & \text { Marks } \\ & \text { (with split } \\ & \text { up) } \end{aligned}$
1.	Unnilquadium, Unq		$1 / 2+1 / 2$
2.	Dot structure		1
3.	Dry cleaning with liquid CO_{2}, bleaching with hydrogen peroxide, environmental friendly catalyst [any two suitable methods]		$1 / 2+1 / 2$
4.	Diagram		1/2+1/2
5.	Presence of isotopes		1
6.	a) Ratio of number of moles of a component to the total number of moles of all the components. b) Molecular mass $=2 \mathrm{x}$ vapor density		$\begin{aligned} & 1 \\ & 1 \end{aligned}$
7.	$\begin{aligned} & \hline \mathrm{c}=\mathrm{v} \lambda \\ & \mathrm{v}=3 \times 10^{8} / 600 \times 10^{-9} \\ & v=5 \times 10^{14} \mathrm{~Hz} \\ & \text { Wave no. }=1 / \lambda \\ & =1 / 600 \times 10^{-9} \\ & =1.67 \times 10^{6} \mathrm{~m}^{-1} \end{aligned}$		$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
8.	Same number of electrons $\mathrm{Cl}^{-}, \mathrm{K}^{+}$[any correct species]		$\begin{aligned} & 1 \\ & 1 / 2+1 / 2 \\ & \hline \end{aligned}$
9.	Photochemical smog	Classical smog	1 each
	Happens in warm,dry sunny climate	Cool and humid	
	Oxidizing in nature	Reducing in nature	
	Or Certain gases act like a blanket, absorbing IR radiation and preventing it from escaping into outer space ,to keep the temperature of earth suitable for life to exist.$\mathrm{CO}_{2}, \mathrm{CH}_{4}, \mathrm{H}_{2} \mathrm{O} \text { [any two] }$		$\begin{aligned} & 1 \\ & 1 / 2 \text { each } \end{aligned}$
10.	$\begin{aligned} & (\mathrm{n}-1) \mathrm{d}^{1-10} \mathrm{~ns}^{0-2} \\ & \text { Variable oxidation state/colored salts/catalyst [any two] } \end{aligned}$		$\begin{aligned} & \hline 1 \\ & 1 / 2 \text { each } \end{aligned}$
11.	Chlorofluorocarbons Skin cancer/cataract/loss of phytoplankton		$\begin{aligned} & 1 \\ & 1 / 2 \text { each } \end{aligned}$
12.	The energy required to break apart an ionic solid and convert its component atoms into gaseous ions.		1

		1
13.	The process by which a body of water becomes enriched in dissolved nutrients (such as phosphates) that stimulate the growth of aquatic plant life usually resulting in the depletion of dissolved oxygen. Rain with a pH below 5.6 Affects monuments, corrodes metals, changes pH of soil, waterbodies [any two harmful effects]	1 1 1
14.	Reagent that gets used up completely in a chemical reaction/reagent present in lesser number of moles. $\mathrm{LR}=\mathrm{HCl}=0.1 \times 100 / 1000=0.01 \mathrm{moles}$ Volume of hydrogen $=0.01 \times 22.4 / 2=0.112 \mathrm{~L}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
15.	a) Formal Charge $=$ [no. of valence electrons on atom] - [non-bonded electrons] + $1 / 2$ [number of bondpairs]. b) Resonance	1 1 1
16.	i)B ii) D iii) C	1 each
17.	$\begin{aligned} & \mathrm{Eo}=2.13 \mathrm{eV} \times 1.6 \times 10^{-19} \mathrm{~J}=3.41 \times 10^{-19} \mathrm{~J} \\ & \mathrm{E}=\mathrm{hc} / \lambda=4.97 \times 10^{-19} \mathrm{~J} \\ & \mathrm{Ke}=1.56 \times 10^{-19} \mathrm{~J} \end{aligned}$ a) $\begin{aligned} \Lambda & =\mathrm{h} / \mathrm{mv} \\ & =6.626 \times 10^{-34} / 2.2 \times 10^{-3} \times 300 \\ & =1 \times 10^{-33} \mathrm{~m} \end{aligned}$ b) $\begin{aligned} \text { Wave number } & =109677\left[1 / \mathrm{n}_{1}{ }^{2}-1 / \mathrm{n}_{2}{ }^{2}\right] \\ & =109677[1 / 4-1 / 9] \\ & =15232.9 \mathrm{~cm}^{-1} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & \hline \end{aligned}$
18.	a) Lesser nuclear charge per electron b) Half filled stable orbitals in nitrogen c) Electron enters smaller $\mathrm{n}=2$ and experiences electron repulsions	1 1 1
19.	Statement	1 each
20.	a) Group 14, period 4 b) A qualitative measure of the ability of an atom in a chemical compound to attract shared electrons to itself c) Ne , Vander Waals radii larger than covalent radii	$1 / 2 \text { each }$ 1
21.	a) 4 f b) $1 \mathrm{~s}, 2 \mathrm{p}, 4 \mathrm{~s}, 3 \mathrm{~d} \mathrm{c}$) 3 e	1 each
22.	Low ionization enthalpy of metallic element /high electron gain enthalpy of nonmetallic element/large lattice enthalpy	1 each

23.	Fe^{3+} configuration Stable due to half-filled orbitals symmetry/higher exchange energy			$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
24.	1p,3f:n $=1$ Pairing of electrons in the orbitals belonging to the same subshell does not take place until each orbital is singly occupied. Nitrogen $1 s^{2} 2 s^{2} 2 p_{x}{ }^{1} 2 p_{y}{ }^{1} 2 p_{z}{ }^{1}$			$1 / 2$ each 1 1
25.	a) Simplest wh b) BH_{3} i) Number of ii) Molality as iii) $\mathrm{M}=\% \mathrm{~d} 10 / \mathrm{M}$ iv) $\mathrm{S}=22.5 \%$	Hber ratio $9.05 / 1$ 9.05 4	various atoms present in a Compound. OR nt in a litre of the solution pendent	1 1 1 1 $1 / 2$ $1 / 2$ 1 1 $11 / 2$ $11 / 2$
26.	a) Orbitals with b) It is impossib momentum c) Uncerta uncertainty $=6.626 \times 10^{-34}$ $=1.05 \times 10^{-31} \mathrm{~m}$ i. could not ex hydrogen [an ii. $\mathrm{E}=-2.18 \times 10^{-1}$ $\mathrm{R}=52.9 \times 25 /$	energy determi ocity) of speed 0 tion=h/4 $14 \times 2.5 \mathrm{x}$ Zeeman -8.72×1 .5pm	ultaneously, the exact position and exact ectron. OR /stark effect/finer details of line spectrum of	1 1 1 $1 / 2$ $1 / 2$ 1 1each $11 / 2$ $11 / 2$
27.	a) $\mathrm{H}_{2} \mathrm{O}-2 \mathrm{lp}, 2 \mathrm{bp}$ $\mathrm{CH}_{4}-4 \mathrm{bp}$, te $\mathrm{ClF}_{3}-2 \mathrm{lp}, 3 \mathrm{~b}$ b) Less than 8 e More than 8	/v shap ral/109 ape d centra nd centr	$\mathrm{meCl} 2$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

| i. \quadShared pair of electrons between bonded atoms are bond pairs \& valence electron
 that do not take part in bonding are lone pairs.
 Explanation with an example | 1 |
| :--- | :--- | :--- | :--- |
| ii.a)due to lone pair repulsion it occupies equatorial position
 b) NH_{3} is more polar as the dipoles are all in one direction whereas in NF_{3} the
 dipole due to lp electron is in opposite direction to give a smaller net dipole
 [figure] | 1 |

